Nine Points of Light: Acquiring Subspaces for Face Recognition under Variable Lighting
نویسندگان
چکیده
Previous work has demonstrated that the image variations of many objects (human faces in particular) under variable lighting can be effectively modeled by low dimensional linear spaces. Basis images spanning this space are usually obtained in one of two ways: A large number of images of the object under different conditions is acquired, and principal component analysis (PCA) is used to estimate a subspace. Alternatively, a 3-D model (perhaps reconstructed from images) is used to render virtual images under either point sources from which a subspace is derived using PCA or more recently under diffuse synthetic lighting based on spherical harmonics. In this paper, we show that there exists a configuration of nine point light source directions such that by taking nine images of each individual under these single sources, the resulting subspace is effective at recognition under a wide range of lighting conditions. Since the subspace is generated directly from real images, potentially complex intermediate steps such as PCA and 3D reconstruction can be completely avoided; nor is it necessary to acquire large numbers of training images or physically construct complex diffuse (harmonic) light fields. We provide both theoretical and empirical results to explain why these linear spaces should be good for recognition.
منابع مشابه
Face Detection at the Low Light Environments
Today, with the advancement of technology, the use of tools for extracting information from video are much wider in terms of both visual power and the processing power. High-speed car, perfect detection accuracy, business diversity in the fields of medical, home appliances, smart cars, humanoid robots, military systems and the commercialization makes these systems cost effective. Among the most...
متن کاملبهبود محلی کیفیت تصاویر چهره با سایه شدید به منظور ارتقاء شناسایی
Varying illuminations, especially the side lighting effects in face images, is one of the major obstacles in face recognition systems. Various methods have been presented for face recognition under different lighting conditions witch require previous knowledge about Light source and shadow area. In this paper, a novel approach based on H-minima transform to image segmentation and illumination n...
متن کاملFace Matching Between Near Infrared and Visible Light Images
In many applications, such as E-Passport and driver’s license, the enrollment of face templates is done using visible light (VIS) face images. Such images are normally acquired in controlled environment where the lighting is approximately frontal. However, Authentication is done in variable lighting conditions. Matching of faces in VIS images taken in different lighting conditions is still a bi...
متن کاملsurvey effect of illuminance source on alertness in a laboratory design
Background and aims: Workplaces with poor lighting conditions often created occupational accidents or illness. This occurs because light cause visual and nonvisual effects on numerous physiological variables, such as the human sleep-wake cycle and cognitive performance. Indoor lighting conditions, as one aspect of the work environment, Influence on occupant’s mood, well-being, task performance ...
متن کاملLambertian Reflectance and Linear Subspaces
We prove that the set of all Lambertian reflectance functions (the mapping from surface normals to intensities) obtained with arbitrary distant light sources lies close to a 9D linear subspace. This implies that, in general, the set of images of a convex Lambertian object obtained under a wide variety of lighting conditions can be approximated accurately by a low-dimensional linear subspace, ex...
متن کامل